A Gabor Feature Based Horizontal and Vertical Discriminant for Face Verification

نویسندگان

  • Yi-Chun Lee
  • Chin-Hsing Chen
  • C.-H. CHEN
چکیده

In this paper, a novel discriminant analysis method for a Gabor-based image feature extraction and representation is proposed and then implemented. The horizontal and vertical two-dimensional principal component analysis (HV-2DPCA) is directly applied to a Gabor face to reduce the redundant information and preserve a bi-directional characteristic as well. It is followed by an enhanced Fisher linear discriminant model (EFM) generating a low-dimensional feature representation with enhanced discrimination power. By the most discriminant features, different types of classes of training samples are made widely apart and the same category classes are made as compact as possible. This novel algorithm is designated as the horizontal and vertical enhanced Gabor Fisher discriminant (HV-EGF) in this paper. By use of various dimensions of features as well as various numbers of training samples, our experiments indicate that the proposed HVEGF method provides a superior recognition accuracy relative to those by the Fisher linear discriminant (FLD), the EFM and the Gabor Fisher classifier (GFC) methods. In our proposal, the recognition accuracies up to 99.0% and 97.7% are reached with images of features dimensions 38× 38× 2 and 10× 10× 2 on the ORL and the Yale databases, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Fusion for Local Gabor Features Based Frontal Face Verification

We address the problem of fusion in a facial component approach to face verification. In our study the facial components are local image windows defined on a regular grid covering the face image. Gabor jets computed in each window provide face representation. A fusion architecture is proposed to combine the face verification evidence conveyed by each facial component. A novel modification of th...

متن کامل

Influence of Wavelet Frequency and Orientation in an SVM-Based Parallel Gabor PCA Face Verification System

We present a face verification system using Parallel Gabor Principal Component Analysis (PGPCA) and fusion of Support Vector Machines (SVM) scores. The algorithm has been tested on two databases: XM2VTS (frontal images with frontal or lateral illumination) and FRAV2D (frontal images with diffuse or zenithal illumination, varying poses and occlusions). Our method outperforms others when fewer PC...

متن کامل

Combining local face image features for identity verification

With an aim of extracting robust facial features under pose variations, this paper presents two directional projections corresponding to extraction of vertical and horizontal local face image features. The matching scores computed from both horizontal and vertical features are subsequently fused at score level via an extreme learning machine that optimizes the total error rate for performance e...

متن کامل

SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is u...

متن کامل

MutualBoost learning for selecting Gabor features for face recognition

This paper describes an improved boosting algorithm, the MutualBoost algorithm, and its application in developing a fast and robust Gabor feature based face recognition system. The algorithm uses mutual information to eliminate redundancy among Gabor features selected using the AdaBoost algorithm. Selected Gabor features are then subjected to Generalized Discriminant Analysis (GDA) for class se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013